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Note 

Difference Schemes with Uniform Second and Third Order 

Accuracy and Reduced Smoothing 

1. INTRODUCTION 

Difference schemes of space-time order three were first introduced in [I, 21 and 
generalized to the fourth order in [3]. In [Sj, the uniform third order accuracy was 
achieved in another way. A third order finite element representation was combined 
with an explicit evaluation of the space-time Taylor coefficients up to order three. 

The third order schemes given in [l, 2, 51 contained enough inherent smoothing 
to be suitable for shock computation. In fact the computation of a one dimensional 
shock was used in [6, 71 as a nonlinear assessment of these difference schemes. It 
appeared that the third order schemes given in [l, 2, 51 produce similar shock dia- 
meters. 

This result and the comparison with the behaviour of other difference methods 
[7] indicates that the inherent smoothing of schemes given in [I, 2, 51 is quite 
reasonable for situations with great change of the fields in one time step. 

However, this will generally be too much smoothing for meteorological applications 
using the primitive equations and an explicit difference scheme. In such models 
gravitational shock waves are absent, but nevertheless determine the maximum 
allowable time step. 

All relevant structures change relatively little in one time step. For this reason 
meteorological computations require schemes with very little inherent smoothing. 
Some dissipation is then introduced by explicit terms or smoothing [8]. Non-dissi- 
pative schemes are available which have a high order with respect to the space variable 
[9]. The purpose of the present paper is to develop reduced smoothing versions of the 
schemes with uniform second and third order accuracy introduced in [4, 51. 

A characteristic feature of the p-th degree method is the varying treatment of 
neighbouring gridpoints, which arises naturally from the use of third and second order 
finite elements [Ill. Therefore we are allowed more flexibility in designing schemes 
than would be the case if all gridpoints were treated the same, as in [I, 21. 

As in [5], we will design the Lhird order scheme by combining third order operations 
with the explicitly computed Taylor coefficients up to order three. 

These operations are rather time consuming on computers, and certainly there is 
room for simplifications and improvements. For ordinary differential equations we 
have the example of the Runge-Kutta method, which achieves fourth order accuracy 
by a combination of first order operations. However, the scheme presented here is 
already rather effective from the economic point of view [5], because one set of Taylor 
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coefficients is used to compute*several degrees of freedom at a time. For example in 
one space dimension a coarse grid X, with gridlength dX is introduced. The third 
order finite element representation of fields is achieved by defining the field as third 
order polynomials for every grid interval [XV , X,,,]. 

The polynomials fit together continuously at X,. . The specification of the poly- 
nomials requires three amplitudes per grid interval. As amplitudes one may choose 
the gridpoint values of the field at X, and it’s second and third derivatives at X+(? ;2) 
14, 5] or alternatively the gridpoint values at X, , XVyvi(llB) and XV+e.‘3) 161. All ampli- 
tudes can be chosen independently to describe initial values and are predicted at 
later times. A set of Taylor coefficients is computed for every interval [X,. 3 X,,-J 
and serves to compute the three amplitudes. The reduced smoothing version of the 
scheme uses the same amount of computation time per degree of freedom as the ori- 
ginal one [5] which for a meteorological application 161 needed computation times 
comparable to those of the Eliassen scheme. The new version of the scheme will need 
to store the fields at two time levels. In comparison, the original version [S] needed 
storage for only one time level. 

The scheme wilI be defined in Section 2. Section 3 gives a linear evaluation and in 
Section 4 a rotationally symmetric gravity wave is computed to exemplify the appli- 
cation 

2. THE FINITE DIFFERENCE SCHEME 

The method is explained referencing definitions given in [5]. It is applicable to 
initial value problems of the form 

with D being a differential operator of order smaller than 4. 
As in [5], a field 4(X, Y) will at even time levels be defined by the constants 

with $u,u+il,:Y),zg , etc. being the respective spatial derivatives of $. 
Inside the grid square (XV, Y,), (X, , YU+,), (XV+, ? Y,,,), (XV+, , YJ the field is 

interpoIated as a polynomia1 (see [5]). The polynomials corresponding to the different 
grid squares fit together continuously. At the odd levels the fields wil1 be represented 
in a grid which is shifted by the amount AX/2. A field in the shifted grid is represented 
by a set of parameters 

(3) 
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Equation (l), the equation of motion, allows the explicit computation of the Taylor 
coefficients 

AS functions of X and Y, these coefficients are again developed into truncated Taylor 
series [.5] up to order 3. In the shifted grid the development is around the point 
WY ? Yu): 

and analogously for 4,(X, Y). In Eq. (5) X and Y must be inside the shifted grid 
square which is defined by its edges (X,,+cld , Yu+~d, K+(l~) , Yu+wd, (X+W~) , 
Y LL+hd, w”+(3:2) 3 G+(Ld 

These Taylor coefficients can be used to compute the fields at a later time level 
by using a third order version of the Leapfrog formula 

4(x, K t + 2 4 = 4(x, Y, t) + 2 d t (+,(x, Y, t + 4 + $2 4dx, Y, t + At)) 

(6) 
However, it is not possible to interpret Eq. (6) as a finite difference equation for 4. 
According to Eq. (5) the coefficient of 2 At is a piecewise polynomial function with 
possible discontinuities at the boundaries of the shifted grid square. Therefore the 
right hand side of Eq. (6) does not define a continuous piecewise polynomial function 
in the original grid. 

In the terminology of [5], 4(X, Y, r) is an element of the space S, and 
&(X, Y, t + At) + (At2/6) * #,,,(X, Y, t + fit) is an element of Pi . S, contains 
continuous functions which are polynomials on every original grid square. Pi con- 
tains functions which are polynomials on every shifted gridsquare. The functions of 
P, are not required to be continuous. 

To obtain a difference equation, we must define 4(X, Y, t + 2 dr) as a function 
of S, , when 4(X, Y, t) is given as a function of S, . In [5] a mapping Q’: Pj -+ S, 
was defined. We now modify Eq. (6) to 

p+‘(X, Y> = @(X, Y) + 2 At Q’ (+;+‘(x, Y) + $: &$(x, y)), 0) 

with II indicating the time level. 
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is an element of the space S, and therefore can be represented by a set of parameters. 

4 RSn+l RS’+’ 
“,U v,u+(l/2).!!f # 

RS”+1 
u,!.L+(l)2).!/3 

(8) 

d 
RS”+1 
r+(l/s),u,ss 

According to Eq. 5 @+‘(X, Y) + (4t2/6) @‘(X, Y) gr IS .ven by its Taylor coefftcients 
up to order 3 at the points (XV, Y,). In [5] the parameters of Eq. (8) are given as 
linear functions of these coefficients. 

Equations (3) are then implemented by 

$6:‘;;” = $ta”& + 2 4t $bjyfl 
69 

d n+r 
v,P+(lm,Y2 = ~~u+(l:2),y2 + 2 4e;;j2,;#” 

and analogously for the other parameters. This step is then combined with the dissi- 
pative time step of [5] as in the two step Lax-Wendroff scheme. The dissipative step 
is used for the transition @, * @+I, and according to Eqs. (9) we compute 
($?I, @+l) --f #PT~. As in [5], the second order version of the scheme is obtained by 
neglecting the third order terms. 

3. LINEAR EVALUATION 

The linear evaluation of the scheme will be done for the linear advection equation 
in one space dimension 

We assume an initial field of the form 

after n double time steps the field will be given by 

for the second degree method or 
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for the third degree method. V is the amplification matrix. The stability of the scheme 
is investigated by numerically computing the eigenvalues of V for a range of para- 
meters and testing whether the absolute values are smaller than one. As pointed out 
in [3], this procedure is not as reliable as the analytic derivation of stability conditions. 
However, it is applied here and in [3, 51 because the analytic derivation of stability 
conditions is a difficult problem for complex schemes. We obtain as (Zourant Levy 
condition dt < 0. 3 dX = 0.9 AX’ for the third degree method. The maximum 
allowable time steps are slightly greater than those of the smoothing versions of the 
schemes [4, 51. The eigenvalues of V can be used to compare the computed phase 
velocity with the exact value C, = - 1. TabIes I and II give the relative phase velocities 
corresponding ‘to the first eigenvalue, for the second and third degree methods, 
respectively. 

The phase velocity errors of the schemes are slightly greater than those of the dissi- 
pative versions of the schemes [4, 51. For the range of wavelengths considered, the 
accuracy shown in Table II is essentially that of the spectral method. For example the 
phase velocity error is smaller than 0.001 for L > 8 AX with the spectral method 
[14] and for L > 4 AX with the third degree method. To compare the efficiency with 
other methods, it should be observed that the third degree method uses three inde- 
pendent amplitudes to describe the field on an interval of length AX, and thus has 
the effective grid length AX’ = AX/3. In a meteorological application [6] the third 

TABLE I 

Second Degree Method, First Eigenvalue 

Relative phase velocities 

At/AX L = 24X L = 4AX L = 8AX L = 16AX 

0.02 0.8 0.98 0.997 0.9994 

0.1 0.8 0.98 0.997 0.9994 
0.2 0.9 0.98 0.998 0.9995 

TABLE II 

Third degree method, first eigenvalue 

Relative phase velocities 

Ar,‘AX L=2AX L = 4AX L = 8AX L = 16AX 

0.02 1.05 1.001 1 .OOOl 1.00002 
0.1 1.05 1.001 1 .OOOl 1.00002 
0.2 1.02 1.001 1.0001 1.00001 
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degree method needed as much computation time as a model using the Eliassen grid 
with grid length &X/2. In relation to its effective grid length AJF = ,4X/3, the third 
degree method appears to be inferior to the spectral method. However, when relating 
the accuracy achieved to the computation time needed in a nontriviai application, 
the third degree method achieves the accuracy of the spectral method for wavelengths 
near 4 AX and needs the same amount of computation time as the Eliassen scheme. 

The damping factors An+llAn corresponding to the eigenvalues of the second and 
third degree schemes, respectively, are given in Tables III, IV. 

TABLE IIIa 

Second degree method, first eigenvalue 
- 

Damping factor JP+~.‘A* 

At/AX’ L = 2AX L=4AX L = SAX L = 16AX 
___I. 

0.02 0.999 0.99996 0.999996 > 1 - 10-s 

0.1 0.99 0.9998 0.9999 0.99999 

0.2 0.99 0.997 0.9996 0.99997 

TABLE IJIb 

Second degree method, second eigenvaiue 

Damping factor PP+~(P 

- 

At/AX L = 2AX L = 4AX L = 8AX L = 160% 

0.02 0.99996 0.999994 > 1 - IO-” > 1 - 10-E 

0.1 0.999 0.99995 0.99999 >i - 10-c 

0.2 0.998 0.9998 0.99999 L-1 - IO-” 

TABLE IVa 

Third degree method, first eigenvalue 

Damping factor Ai7+1/An 

AQAX L = 2AX L = 4AX L = SAX L = 16AX 

0.02 0.99996 0.999994 >l - 10-E :> 1 - IO-” 

0.1 0.999 0.99995 0.99999 >l - 10-s 

0.2 0.998 0.9998 0.99999 >1 - 10-s 

#I/31/3-10 
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In view of meteorological applications, the behaviour of the schemes for small dt 
is most interesting. For Of/OX = 0.02, the modes corresponding to the first eigenvalue 
are nearly undamped. This is desirable with respect to meteorological applications. 

The scales belonging to the second and third eigenvalue are predicted very inaccu- 
rately. Therefore it would be desirable to damp them, which is not achieved by the 
damping factors given in Tables IIIb and IVb, c. When solving linear equations, this 
leads to an accumulation of small scale features during the time development. 
For nonlinear equations, the use of these schemes without an additional smoothing 
operation will generally lead to nonlinear instability, because there is no damped 
mode. 

TABLE IVb 

Third degree method, second eigenvalue 

Damping factor A*+‘/A” 

4tj4x L = 24X L=44X L = 8AX L = 164X 

0.02 0.999995 0.9998 0.9995 0.999 
0.1 0.99998 0.995 0.99 0.95 
0.2 0.9995 0.99 0.95 0.9 

TABLE IVc 

Third Degree Method, Third Eigenvalue 

Damping factor &+‘/A” 

At/AX L = 2AX L=4Ax L=SAX L = 16AX 

0.02 0.99998 0.998 0.998 0.998 
0.1 0.98 0.95 0.95 0.95 
0.2 0.95 0.9 0.85 0.85 

The lack of damping for wavelengths smaller than 6 AX’ is a rather undesirable 
feature. To achieve a damped mode one might use the scheme in combination with 
highly selective smoothing operations, like those defined in [8]. This will probably be 
the best solution in view of an optimal treatment of the wavelengths greater than 
6 Ax’. A reasonable performance of the scheme is also obtained by combining the 
non-smoothing scheme and the version defined in [S] to achieve the desired degree 
of smoothing. 
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4. A NONLINEAR COMPUTATION 

The application of the schemes is exemplified by a solution of the shallow water 
equations: 

ut=-uu,- VU-Hz 

k;= -uvz- VI?-H, f,i2) 

Ht = -(HU), - (HV), 

The computation will be done on a 31 x 31 point grid using the second degree 
method with dX = 381 km. The distance of the opposing boundaries is 29 rlXO 
The boundary conditions were chosen such that upper and lower boundaries are 
reflective and the right and left boundaries are open to gravity waves 1131. The 

H--FED 
TX 2.H 

a 

c d 
FIG. 1. The Hfield of the circular symmetric gravity wave at different time computed by the 

smoothing version of the second degree method. (a) t = 2.2hr; (b) t = 6.6 hr; (c) t = Il.1 hr: 
(d) t = 15.5 hr. 
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initial condition is chosen to produce a circular symmetric gravity wave. In Eqs. (13) 
U, V, H replace the 4 of Eq. (2). 

u !J+(l’z),u,ti - - &cc+(l/e)32 = Ku = 0 
V v+(1!2),LL,x2 = V v,u+(l!z),Yz = K,, = 0 

H v+(1/2),11,2? - - fL,u+w21,ya = 0 
H,,, = 2(381 km/hr)” for v,~ f (15, 15) 

H - S(381 km/hr)2 15,15 - 

(13) 

This situation is appropirate to see the effect of numerical accuracy and to test the 
behaviour of the scheme near boundaries. 

At first the computation is done with dt = l/12 hr, using the smoothing version 
of the second degree method [4]. The time development of the gravity wave is shown 

H-FELO 
TX 2.H 

a 

J- 

c cl 

tl-FELD 
--%, 15.H A 

FIG. 2. As Fig. 1, but with the time step reduced by a factor 4. (a) I = 2.2 br; (b) t = 6.6 hr; 
(c) t = 11.1 hr; (d) t = 15.5hr. 
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in Fig. 1. The numerical solution is circular symmetric to good approximation, 
even after reflection at the boundary. 

The test computations given in [5, 131 indicate that the smoothing version of the 

second degree method contains an appropriate degree of smoothing when there is a 
considerable change of the fields in one time step. This means that the phenomenon 
to be computed determines the Courant Levy time step. This situation occurs in the 
computation shown kn Fig. 1. However, in meteorology we often have a situation 
where less smoothing is required. In models using explicit schemes for the primitive 
equations, the time step is determined by the gravity and sound waves. The relevant 
meteorological phenomena change very little during one time step. Therefore such 
models require difference schemes with reduced smoothing. 

We simulate this situation by doing the computation of the gravity wave with a 
time step which is much smaller than required by the Courant Levy condition. 

H-FELD 
T =  2.H 

a 

FIG. 3. As Fig. 2, buf using the reduced smoothing version of the second degree method together 
with the smoothing version. One smoothing step was used on four non smoothing steps. A resiora- 
tion of the amplitudes is achieved. (a) t = 2.2 hr; (b) t = 5.6 hr; (c) t = Il.1 hr; (d) t = 15.5 hr. 
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Figure 2 is the same as Figure 1, except that the computation was done with a time 
step reduced by a factor 4. With the dissipative version of the second degree method 
this means four times as much smoothing as before, since the scheme described in 
[4] involves a smoothing operation every time step. Figigure 2 shows the amplitudes 
to be considerably reduced, compared with Fig. 1. The main loss of amplitude occurs 
at the beginning of the forecast, in the presence of small scales. Figure 3 shows the 
same forecast, but using the smoothing and nonsmoothing versions of the second 
degree method in turn. One smoothing step to four non-smoothing steps is used. 
A comparison of Figs. 1 and 3 shows that the procedure leads to a restoration of the 
amplitudes. 

Figures 1 to 3 show the gravity waves to be circular symmetric to good approxi- 
mation. This can be cansidered as an effect of the numerical accuracy of the scheme. 
The reflection of the gravity wave at the boundary indicates that the reduced 
smoothing version of the second degree method may be as well behaved with respect 
to boundaries as the smoothing version [12]. In the present note it is not intended 
to use the circular symmetric gravity wave for a systematic comparison of difference 
schemes, as done in [7] for the one dimensional shock wave. Therefore we refrain 
from showing the results of other difference schemes. Schemes with ordinary accuracy, 
like the centered difference method, will more or less destroy the circular symmetry 
of the phenomenon. In particular the reflection at the boundary is often misrepre- 
sented. 

5. CONCLUSIONS 

The reduced smoothing versions of the second and third degree method have 
slightly greater phase velocity errors than the dissipative schemes. For the range of 
amplitudes considered, the linear analysis still showed phase velocities comparable 
to those of the spectral method. By using the smoothing and the reduced smoothing 
version together, one obtains an overall smoothing which is appropriate for synoptic 
scale meteorological calculations. 

A nonliner example showed that the reduced smoothing scheme leads to greater 
amplitudes, when applied in a situation where the original version forced too much 
damping. The example also showed that the new version of the scheme is as well 
behaved with respect to boundaries as the original one. The good preservation of the 
circular symmetry of the solution is an indication of the accuracy of the schemes. 
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